Close Banner
Brain Guides

Ketamine Guide: Pharmacology, Indications, Dosing Guidelines and Adverse Effects

Published on July 11, 2025 Certification expiration date: July 11, 2028

Sebastián Malleza, M.D.

Medical Editor - Psychopharmacology Institute

Free Downloads for Offline Access

  • Free Download PDF File

In a nutshell

Ketamine is a dissociative anesthetic with rapid-acting antidepressant properties that has gained significant attention in psychiatric practice over the past decade. Like esketamine, it delivers a very rapid antidepressant effect (within 40 min-24 h). Still, evidence for sustained benefit beyond a few weeks is limited, and all psychiatric uses remain off-label in the United States.

  • Consider esketamine vs ketamine when:
    • Insurance coverage is available 
    • Standardized protocols are preferred – REMS program provides structured safety monitoring and dosing guidelines.
    • Legal protection is prioritized 
    • Patient prefers non-invasive administration
    • Maintenance treatment is planned – Superior evidence base for relapse prevention during maintenance phase
  • Consider ketamine vs esketamine when:
    • Rapid, robust response is needed – IV ketamine achieves remission faster than esketamine (hazard ratio = 5.0) [1]
    • Cost is a primary concern and insurance coverage is unavailable
    • Flexible dosing is required – Ability to adjust doses (0.5-1.0 mg/kg) based on individual response
    • Clinical expertise exists – Established IV ketamine protocols and experienced clinical staff

Pharmacodynamics and mechanism of action

  • Primary mechanism: Non-competitive, nonselective NMDA receptor antagonist [2–4]
    • Racemic mixture containing equal parts of S-ketamine (esketamine) and R-ketamine enantiomers [5]
    • Binds to phencyclidine (PCP) site within NMDA receptor channel pore, blocking glutamate-induced calcium influx [3]
    • Preferentially inhibits NMDA receptors on GABAergic interneurons, causing disinhibition of pyramidal neurons and increased glutamate release [4]
    • Enantiomer differences
      • S-ketamine (esketamine) has 2-3 fold higher NMDA receptor affinity than R-ketamine [3,6,7]
      • R-ketamine may have distinct properties, including potentially greater BDNF effects and fewer psychotomimetic effects in preclinical studies, though clinical significance remains under investigation [8]
  • AMPA receptor modulation
    • Indirectly enhances AMPA receptor signaling through increased glutamate release [3]

    • Ketamine metabolite (2R,6R)-hydroxynorketamine directly activates AMPA receptors, contributing to antidepressant effects without NMDA antagonism [9]

    • This shift from NMDA to AMPA signaling appears critical for rapid antidepressant effects [4]

  • Downstream effects on brain plasticity
    • Increases BDNF release, potentially explaining rapid synaptogenic and antidepressant effects [3,4]
    • Activates mTOR signaling pathway, leading to increased protein synthesis and dendritic spine formation in prefrontal cortex [10]
  • Opioid receptors
    • Clinical evidence suggests opioid system involvement: naltrexone pretreatment significantly attenuated ketamine’s antidepressant effects in humans [11]
    • Binds to μ-, κ-, and δ-opioid receptors with Ki values of 42.1, 28.1, and 272 μM respectively [3,4,11]
    • Contribution to therapeutic effects remains debated, with conflicting evidence from naltrexone studies and genetic analyses [4,11,12]
    • May explain why other NMDA antagonists (e.g., memantine) lack antidepressant efficacy [13,14]
  • Additional pharmacological targets
    • Sigma receptors: R-ketamine shows higher σ1 receptor affinity than S-ketamine; racemic ketamine preferentially binds σ2 receptors, potentially modulating neuroplasticity pathways [3]
    • Other targets: Weak inhibition of monoamine transporters (SERT, NET, DAT), antagonism at 5-HT3 and nicotinic receptors, and weak D2 receptor agonism at subanesthetic doses [3,4]

Pharmacokinetics and Interactions

Metabolism and pharmacokinetic interactions

  • Ketamine is primarily metabolized through N-dealkylation via CYP2B6 and CYP3A4 to form the active metabolite Norketamine [2,3]
  • Minor pathways involve CYP2C9 and other CYP enzymes [3]
  • Norketamine has approximately one-third the anesthetic potency of ketamine [2]
  • Ketamine levels potentially increased by:
    • Strong CYP3A4 inhibitors:
      • Ketoconazole, clarithromycin [15]
      • Grapefruit juice [16,17]
    • CYP2B6 inhibitors:
      • Fluvoxamine, ticlopidine, orphenadrine [15,18]
    • Monitor for evidence of increased ketamine effects and consider dose reduction
  • Ketamine levels potentially decreased by:
    • Strong CYP3A4 inducers:
      • Rifampin, carbamazepine, phenytoin, St. John’s Wort [15]
      • Monitor for reduced efficacy; dose increase may be necessary
    • CYP2B6 inducers:
      • Rifampin, efavirenz, nevirapine, phenobarbital
      • Monitor for signs of reduced ketamine efficacy
  • CYP2B6 polymorphisms:
    • The CYP2B6*6 allele (15-60% frequency, highest in African and Asian populations) reduces enzyme activity
    • May require lower ketamine doses in homozygous carriers [15]
    • Clinical significance unclear due to conflicting study results [15,19]
  • Oral route is less reliable than parenteral administration
    • Bioavailability only 20-30% due to extensive first-pass metabolism [20]
    • Results in higher norketamine:ketamine ratios and less predictable dosing

Pharmacodynamic interactions

  • Drug interactions
    • CNS depressants(benzodiazepines, opioids, alcohol)
      • May result in profound sedation, respiratory depression, coma, and death [2]
      • Closely monitor respiratory parameters and consider dose reductions
      • Opioid analgesics may prolong recovery time [2]
    • Benzodiazepines and antidepressant efficacy
      • May diminish antidepressant benefits of ketamine [21,22]
      • Clinical reports suggest delayed response, earlier relapse with concurrent benzodiazepine use [23]
      • Possible mechanisms: GABA-mediated CNS depression or suppression of ketamine-induced glutamatergic signaling [15]
    • Theophylline/Aminophylline
      • Concomitant use may lower seizure threshold [2]
      • Consider alternative to ketamine in patients receiving these medications
    • Sympathomimetics and vasopressin:
      • May enhance ketamine’s sympathomimetic effects [2]
      • Monitor vital signs closely and consider individualized dose adjustments
    • Glutamatergic modulators:
      • Lamotrigine: May reduce some of ketamine’s effects, but unknown impact on antidepressant efficacy [15]
      • Memantine: theoretical antagonism of ketamine effects through NMDA receptor competition [15,24]
      • Clozapine: may theoretically influence glutamatergic neurotransmission through action on glycine transporters, blunting effects of ketamine [15,25,26]
      • Use caution until formal studies clarify impact on therapeutic benefits
    • MAOIs:
      • Recent systematic review suggests combination may be safer than previously thought [27]
      • No cases of hypertensive crisis or serotonin syndrome reported
      • Blood pressure and heart rate increases were clinically insignificant in all but one patient
      • Traditional concerns about hypertensive reactions remain; further research needed
      • Monitor cardiovascular parameters closely if combination is considered necessary

Half-life

  • Ketamine has a biphasic elimination pattern:
    • Alpha phase (anesthetic effect): 10-15 minutes – rapid onset and offset of anesthetic effects [2]
    • Beta phase (redistribution): 2.5 hours – reflects redistribution from CNS to peripheral tissues [2]
    • Effects typically last 1-2 hours for IV administration and 3-4 hours for IM administration

Dosage forms

Dosage forms

  • Immediate-release:
    • Injectable solution (IV/IM, multiple-dose vials)
      • 10 mg/mL (200 mg/20 mL), 50 mg/mL (500 mg/10 mL), 100 mg/mL (500 mg/5 mL)
      • Ketalar, Generic
    • Intranasal solution (compounded, off-label)
      • Variable concentrations (typically prepared from 50 mg/mL or 100 mg/mL injectable solutions)
      • Compounded preparations
    • Oral solution (compounded, off-label)
      • Variable concentrations (prepared from injectable solutions for weight-based dosing)
      • Compounded preparations
  • Formulation considerations:
    • Injectable solutions
      • IM administration requires deep injection into large muscle mass
      • IV bolus doses should be administered over 1 minute (0.5 mg/kg/minute); depression treatment requires a 40-minute infusion [28]
    • Off-label preparations:
      • Intranasal: Volume limitations restrict adequate adult dosing.
      • Oral: Injectable solution may be administered undiluted or mixed with flavoring agents; administer immediately after preparation.
      • Other routes (subcutaneous, rectal) exist but are not used in psychiatric practice
    • Investigational formulations:
      • Preservative-free formulations (NRX-100) aim to eliminate benzethonium chloride found in current preparations
      • pH-neutral formulations (HTX-100) designed for both IV and subcutaneous administration
      • Extended-release oral tablets (R-107) being studied to minimize dissociative effects and enable potential at-home use

Indications

Psychiatric off-label uses

Treatment-resistant depression (TRD)

  • Ketamine may be considered for patients with treatment-resistant depression (TRD) who have not responded to other antidepressant therapies.
    • Note: Esketamine (intranasal) is an FDA-approved formulation for TRD and MDD with acute suicidal ideation or behavior (MDSI) [29]
  • Ketamine provides rapid antidepressant effects within hours (vs. weeks for traditional antidepressants) [30–32]
  • IV ketamine appears as a viable option for patients with acute suicidality or who need ultra-rapid antidepressant response [33]
  • Efficacy evidence:
    • Single IV infusion produces a rapid response beginning at 40 min and peaking at 24 hours [34,35]
    • Response typically diminishes by day 10-14 without maintenance treatment [13].
    • Relapse rates up to 90% at four weeks following a single treatment [34]
    • May be as effective as ECT for treatment-resistant cases according to recent trials [36]
    • Repeated infusions (2-3 times weekly) may sustain antidepressant effects [31]
      • Onset of antidepressant effect may perhaps be faster with repeated infusions of ketamine, compared with repeated treatments with ECT [37]
      • Ketamine showed the largest improvement at two weeks compared to other treatments such as medications, ECT, and rTMS in treatment-resistant depression [38]
    • Treatment duration up to 6 weeks has been studied, though optimal length of therapy and maintenance dosing protocols remain to be established [39]
    • Long-term ketamine efficacy and safety remain largely unknown due to limited high-quality studies with short treatment durations and inadequate follow-up [40,41]
      • Sparse observational data show variable responses and high relapse rates, raising concerns about tolerance, tachyphylaxis, and potential dependence with repeated use [28,42–44]
  • Ketamine as augmentation
    • Ketamine can be safely combined with most standard antidepressants. Randomized trials support its use both as monotherapy and as add-on therapy to antidepressants and antipsychotics [30]
    • May accelerate antidepressant response when combined with conventional therapy
      • One trial found higher response rates and faster improvement when ketamine was added to escitalopram [45]
  • Dosing:
    • Intravenous (IV) route (most studied)
      • Initial: 0.5 mg/kg (less than the dose used for inducing general anesthesia) administered over 40 minutes [46,47]
      • May increase to 0.75-1 mg/kg based on response and tolerability [48]
      • Obesity adjustment: Use ideal body weight for BMI ≥30 kg/m² to reduce cardiovascular risks [49]
      • Infusion rate: Standard 40 minutes, though rates have varied from 2-100 minutes across studies; slower rates may reduce adverse effects [48]
      • Frequency: Initially 2-3 times weekly, then once weekly or biweekly for maintenance [39]
    • Intramuscular (IM) route
      • Initial: 0.25-0.5 mg/kg/dose [50]
      • Comparable efficacy to IV route in small head-to-head studies [50]
      • May be preferred when IV access is difficult or for outpatient settings [51]
      • Additional doses described, but frequency and dosing poorly defined [51]
    • Intranasal route (limited evidence):
      • Can be prescribed in an intranasal formulation from compounding pharmacies.
      • 50 mg demonstrated efficacy in one small randomized crossover trial [52]
    • Oral route (limited evidence):
      • 1 mg/kg thrice weekly showed benefit over placebo in small RCT [53]
      • Bioavailability only 20-30% due to extensive first-pass metabolism [54]
      • Currently available formulations taste poorly and have limited duration [30]
      • Investigational extended-release formulation: Phase 2 study showed promise with twice weekly dosing, designed to mitigate abuse concerns [55]

Acute suicidal ideation

  • Rapid antisuicidal effects reported in multiple randomized controlled trials [33]
  • Meta-analysis shows a significant reduction in suicidal ideation compared to placebo within 24 hours, lasting up to 7 days [56]
  • Can provide a crucial therapeutic window during acute crisis while conventional antidepressants take effect [33]
  • Effective in both unipolar and bipolar depression with suicidal ideation [57]
  • Dosing:
    • Similar to TRD dosing:
      • IV: 0.5 mg/kg over 40 minutes [57]
      • May consider more frequent initial dosing (e.g., 2-3 times in first week) for high-risk patients [39]

Bipolar depression

  • Has been studied and used as an adjunct to mood stabilizers rather than monotherapy [ [58];Bahji2022a; [59][60][13]]
  • Initial reduction in depressive symptoms up to 3-6 days, but no sustained superiority over controls from 7-13 days onward according to recent meta-analyses [29]
    • Evidence quality is generally poor with low certainty, and insufficient data to differentiate racemic ketamine from esketamine effects [29]
  • No clear benefit for remission/response rates in bipolar-only analyses beyond the acute phase, further research needed [ [29]; Bahji2022a]
  • Dosing:
    • Similar to TRD dosing with careful monitoring:
      • IV: 0.5 mg/kg over 40 minutes [59]
      • Consider concurrent mood stabilizer therapy to prevent mood switching [13]

Post-traumatic stress disorder (PTSD)

  • VA/DoD Clinical Practice Guideline suggests against the use of ketamine for the treatment of PTSD [61]
  • Significant improvement in PTSD symptoms at 24 hours and 1-4 week endpoints with small to moderate effect size (standardized effect = 0.25) [62]
    • However, high heterogeneity across studies and methodological quality concerns limit the certainty of findings [62,63]
  • Anxiolytic effects across acute (<12h), subacute (24h), and sustained (7-14 days) timepoints [63]
  • Evidence suggests potential for both rapid symptom relief and sustained neuroplastic changes [64]
  • May be helpful for comorbid PTSD and depression [65]
  • Dosing:
    • Limited data, generally follows TRD dosing:
      • IV: 0.5 mg/kg over 40 minutes [66]

FDA-approved Indications

General anesthesia (induction ± maintenance)

  • Intravenous or intramuscular dissociative anesthetic used as a sole agent, for induction before other agents, or as a supplement when hemodynamic stability is desirable [2]
  • Used as an adjunct to decrease the need for other anesthetic medications. Particularly valuable in opioid-tolerant patients to minimize opioid requirements.
  • Dosing
    • Anesthetic doses (2-4.5 mg/kg IV) are approximately 4-10x higher than doses used for depression [2]

Side Effects

Most common side effects

Neurological/Psychiatric

  • Dissociation and psychotomimetic effects (>70% of patients) [67]
    • It may occur more often with ketamine than with esketamine. However, no head-to-head trials comparing the two drugs have been published [68]
    • Most common adverse effect and primary reason for treatment discontinuation [2,67]
    • Includes transient perceptual changes, depersonalization, derealization, hallucinations, and emergence reactions
    • Typically begins during infusion and resolves within 2-4 hours [2,13]
    • May manifest as pleasant dream-like states to frank delirium and irrational behavior [2]
    • Intensity tends to diminish with repeated administrations [31]
  • Emergence reactions (12% incidence)
    • Postoperative confusional states, agitation, and vivid imagery during recovery period [2]
    • Duration generally a few hours, with no known residual psychological effects from anesthetic use
    • Higher incidence with intravenous administration and higher doses
    • Can be reduced by minimizing verbal, tactile, and visual stimulation during recovery [2]
  • Anxiety, blurred vision, poor coordination
  • Headache
  • Nausea or vomiting

Cardiovascular

  • Blood pressure elevation (frequently observed) (30-40% incidence) [67]
    • Typically occur 30-40 minutes post-infusion and resolve within 70-90 minutes [2]
    • Systolic BP (20 mmHg average peak) [13,49,57,69]
    • Diastolic BP (13 mmHg average peak) [49,57,69]
    • Dose-dependent response with higher elevations at increased doses [70]
  • Heart rate increase
    • Mean increases of 9 beats/minute within 2 hours of infusion [69]
    • Changes typically normalize within hours of administration
  • Increased cardiac output and cardiac index [2]
    • Results from ketamine’s sympathomimetic effects and catecholamine reuptake inhibition
    • May increase myocardial oxygen demand
  • Other effects: Chest pain, palpitations, and pressure may occur but typically resolve within 90 minutes [67]

Gastrointestinal

  • Nausea and vomiting
    • Common transient adverse effects in randomized trials [31,57]
    • Generally resolve within hours of administration

Other common side effects

  • Dizziness and coordination difficulties
  • Increased salivation [2]
    • Antisialagogue may be administered prior to induction to manage hypersalivation
  • Diplopia and nystagmus [2]
  • Elevation in intraocular pressure [2]

Severe side effects

  • Respiratory depression and apnea
    • May occur with overdosage or rapid rate of administration [2]
    • Emergency airway equipment must be immediately available [2]
  • Abuse and dependence potential
    • Schedule III controlled substance due to abuse potential [2]
    • The addictive potential of ketamine could be attributed to its chemical structure being similar to phencyclidine, as well as its agonistic effects on opioid receptors [67,71]
    • Street Names: Special K, K, Kit Kat, Cat Valium, Super Acid, Special La Coke, Purple, Jet, and Vitamin K [67,72]
    • Physical and psychological dependence may occur with prolonged use; tolerance may develop with repeated use.
  • Renal and urinary disorders (with chronic use)
    • Lower urinary tract symptoms, including dysuria, frequency, urgency, and hematuria [2]
    • Cystitis and reduced bladder capacity have been reported with long-term off-label use
    • Regular monitoring recommended for patients with a history of chronic ketamine use [2]
  • Neurotoxicity (with long-term use)
    • Studies in abusers show adverse effects on brain structure and cognitive function [67]
  • Hepatotoxicity (with recurrent use)
    • Drug-induced liver injury with cholestatic pattern [2]
    • Baseline liver function tests recommended for patients receiving recurrent ketamine [2]

Contraindications

  • Patients for whom significant elevation of blood pressure would constitute a serious hazard [2]
  • Known hypersensitivity to ketamine or any component of the formulation [2]
  • Known or suspected schizophrenia (absolute contraindication) [73]

Use in special populations

Pregnancy

  • Not recommended: Animal studies show dose-dependent histopathologic changes in fetal organs and neurodevelopmental concerns [74,75]
  • Fetal brain development may be affected through NMDA receptor antagonism.

Breastfeeding

  • Ketamine and metabolites present in breast milk with relative infant dose 0.34-0.77% of maternal dose [76,77]
  • Single-dose use (e.g., surgical procedures) generally considered acceptable with no reported adverse effects in breastfed infants [78,79]
  • Repeated/chronic use for depression:
    • Limited safety data available; case series of 4 patients showed no adverse effects [76]
    • The manufacturer of Esketamine does not recommend breastfeeding during treatment since NMDA receptor antagonism affects rapid brain development in infants [80]
  • Monitor breastfed infants for sedation, poor feeding, and adequate weight gain

Hepatic impairment

  • No dosage adjustments are provided in the manufacturer’s labeling.
  • Ketamine undergoes extensive metabolism in the liver.
    • Hepatic impairment is expected to reduce the clearance of ketamine, leading to increased plasma concentrations and a prolonged elimination half-life.
  • Hepatobiliary dysfunction has been reported with recurrent or prolonged use of ketamine (e.g., scenarios of misuse/abuse, or medically supervised but unapproved off-label indications such as certain chronic pain regimens) [2,81]

Renal impairment

  • Mild to moderate impairment:
    • No dose adjustment necessary for single doses [20]
  • Severe impairment/End-stage renal disease:
    • No dosage adjustment necessary [82]
    • Use with caution. Avoid prolonged use or monitor for signs of toxicity
    • Parenteral: Ketamine levels may be 20% higher; active metabolites may accumulate with unknown clinical significance [82,83]
    • Oral administration (off-label): Limited pharmacokinetic data; extensive first-pass metabolism results in higher norketamine and dehydronorketamine concentrations compared to parenteral routes [54,84]

Obesity

  • Limited data. Inconsistent dosing strategies prevent universal weight-based recommendations [85,86]
  • Class 1 and 2 obesity (BMI 30-39 kg/m²):
    • Use actual body weight for initial dosing
    • Titrate to clinical effect as needed
  • Class 3 obesity (BMI ≥40 kg/m²):
    • Use adjusted body weight or ideal body weight for initial dosing [87]
    • Maintain consistent dosing weight throughout therapy (do not switch between weight calculations). Monitor for metabolite accumulation with prolonged use.

Elderly

  • No specific dose adjustments needed
  • Older adults metabolize ketamine slowly and need lower dosing.

Brand names

  • US: Ketalar
  • Canada: Ketalar
  • Other countries/regions: Calypsol, Inducmina, Kain, Keiran, Ketalar, Ketanest, Ketamin, Ketamin curamed, Ketamin Inresa, Ketamin sintetica, Ketamine, Ketamine HCL, Ketamine interpharma, Ketlar, Ketomin, Micro ketamine, Narkamon, Tekam

References

  1. Singh, B., Kung, S., Pazdernik, V., Schak, K. M., Geske, J., Schulte, P. J., Frye, M. A., & Vande Voort, J. L. (2023). Comparative Effectiveness of Intravenous Ketamine and Intranasal Esketamine in Clinical Practice Among Patients With Treatment-Refractory Depression: An Observational Study. The Journal of Clinical Psychiatry84(2), 22m14548. https://doi.org/10.4088/JCP.22m14548
  2. Food, U. S., & Administration, D. (n.d.). KetalarFDA. Retrieved June 9, 2025, from https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/016812s051lbl.pdf
  3. Zanos, P., Moaddel, R., Morris, P. J., Riggs, L. M., Highland, J. N., Georgiou, P., Pereira, E. F. R., Albuquerque, E. X., Thomas, C. J., Zarate, C. A., & Gould, T. D. (2018). Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacological Reviews70(3), 621–660. https://doi.org/10.1124/pr.117.015198
  4. McIntyre, R. S., Rosenblat, J. D., Nemeroff, C. B., Sanacora, G., Murrough, J. W., Berk, M., Brietzke, E., Dodd, S., Gorwood, P., Ho, R., Iosifescu, D. V., Lopez Jaramillo, C., Kasper, S., Kratiuk, K., Lee, J. G., Lee, Y., Lui, L. M. W., Mansur, R. B., Papakostas, G. I., … Stahl, S. (2021). Synthesizing the Evidence for Ketamine and Esketamine in Treatment-Resistant Depression: An International Expert Opinion on the Available Evidence and Implementation. American Journal of Psychiatry178(5), 383–399. https://doi.org/10.1176/appi.ajp.2020.20081251
  5. Jelen, L. A., Young, A. H., & Stone, J. M. (2021). Ketamine: A tale of two enantiomers. Journal of Psychopharmacology (Oxford, England)35(2), 109–123. https://doi.org/10.1177/0269881120959644
  6. Liu, P., Zhang, S.-S., Liang, Y., Gao, Z.-J., Gao, W., & Dong, B.-H. (2022). Efficacy and Safety of Esketamine Combined with Antidepressants for Treatment-Resistant Depression: A Meta-Analysis. Neuropsychiatric Disease and Treatment18, 2855–2865. https://doi.org/10.2147/NDT.S388764
  7. Vasiliu, O. (2023). Esketamine for treatment‑resistant depression: A review of clinical evidence (Review). Experimental and Therapeutic Medicine25(3), 111. https://doi.org/10.3892/etm.2023.11810
  8. Yang, C., Shirayama, Y., Zhang, J., Ren, Q., Yao, W., Ma, M., Dong, C., & Hashimoto, K. (2015). R-ketamine: A rapid-onset and sustained antidepressant without psychotomimetic side effects. Translational Psychiatry5(9), e632. https://doi.org/10.1038/tp.2015.136
  9. Zanos, P., Moaddel, R., Morris, P. J., Georgiou, P., Fischell, J., Elmer, G. I., Alkondon, M., Yuan, P., Pribut, H. J., Singh, N. S., Dossou, K. S. S., Fang, Y., Huang, X.-P., Mayo, C. L., Wainer, I. W., Albuquerque, E. X., Thompson, S. M., Thomas, C. J., Zarate, C. A., & Gould, T. D. (2016). NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature533(7604), 481–486. https://doi.org/10.1038/nature17998
  10. Duman, R. S., Aghajanian, G. K., Sanacora, G., & Krystal, J. H. (2016). Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nature Medicine22(3), 238–249. https://doi.org/10.1038/nm.4050
  11. Williams, N. R., Heifets, B. D., Blasey, C., Sudheimer, K., Pannu, J., Pankow, H., Hawkins, J., Birnbaum, J., Lyons, D. M., Rodriguez, C. I., & Schatzberg, A. F. (2018). Attenuation of Antidepressant Effects of Ketamine by Opioid Receptor Antagonism. American Journal of Psychiatry175(12), 1205–1215. https://doi.org/10.1176/appi.ajp.2018.18020138
  12. Sanacora, G. (2019). Caution Against Overinterpreting Opiate Receptor Stimulation as Mediating Antidepressant Effects of Ketamine. The American Journal of Psychiatry176(3), 249. https://doi.org/10.1176/appi.ajp.2018.18091061
  13. Newport, D. J., Carpenter, L. L., McDonald, W. M., Potash, J. B., Tohen, M., Nemeroff, C. B., & APA Council of Research Task Force on Novel Biomarkers and Treatments. (2015). Ketamine and Other NMDA Antagonists: Early Clinical Trials and Possible Mechanisms in Depression. The American Journal of Psychiatry172(10), 950–966. https://doi.org/10.1176/appi.ajp.2015.15040465
  14. Ates-Alagoz, Z., & Adejare, A. (2013). NMDA Receptor Antagonists for Treatment of Depression. Pharmaceuticals6(4), 480–499. https://doi.org/10.3390/ph6040480
  15. Andrade, C. (2017). Ketamine for Depression, 4: In What Dose, at What Rate, by What Route, for How Long, and at What Frequency? The Journal of Clinical Psychiatry78(7), e852–e857. https://doi.org/10.4088/JCP.17f11738
  16. Bailey, D. G., Dresser, G., & Arnold, J. M. O. (2013). Grapefruit-medication interactions: Forbidden fruit or avoidable consequences? CMAJ: Canadian Medical Association Journal = Journal de l’Association Medicale Canadienne185(4), 309–316. https://doi.org/10.1503/cmaj.120951
  17. Peltoniemi, M. A., Saari, T. I., Hagelberg, N. M., Laine, K., Neuvonen, P. J., & Olkkola, K. T. (2012). S-ketamine concentrations are greatly increased by grapefruit juice. European Journal of Clinical Pharmacology68(6), 979–986. https://doi.org/10.1007/s00228-012-1214-9
  18. Peltoniemi, M. A., Saari, T. I., Hagelberg, N. M., Reponen, P., Turpeinen, M., Laine, K., Neuvonen, P. J., & Olkkola, K. T. (2011). Exposure to oral S-ketamine is unaffected by itraconazole but greatly increased by ticlopidine. Clinical Pharmacology and Therapeutics90(2), 296–302. https://doi.org/10.1038/clpt.2011.140
  19. Rao, L. K., Flaker, A. M., Friedel, C. C., & Kharasch, E. D. (2016). Role of Cytochrome P4502B6 Polymorphisms in Ketamine Metabolism and Clearance. Anesthesiology125(6), 1103–1112. https://doi.org/10.1097/ALN.0000000000001392
  20. Mion, G., & Villevieille, T. (2013). Ketamine Pharmacology: An Update (Pharmacodynamics and Molecular Aspects, Recent Findings). CNS Neuroscience & Therapeutics19(6), 370–380. https://doi.org/10.1111/cns.12099
  21. Ford, N., Ludbrook, G., & Galletly, C. (2015). Benzodiazepines may reduce the effectiveness of ketamine in the treatment of depression. Australian & New Zealand Journal of Psychiatry49(12), 1227–1227. https://doi.org/10.1177/0004867415590631
  22. Frye, M. A., Blier, P., & Tye, S. J. (2015). Concomitant benzodiazepine use attenuates ketamine response: Implications for large scale study design and clinical development. Journal of Clinical Psychopharmacology35(3), 334–336. https://doi.org/10.1097/JCP.0000000000000316
  23. Albott, C. S., Shiroma, P. R., Cullen, K. R., Johns, B., Thuras, P., Wels, J., & Lim, K. O. (2017). The Antidepressant Effect of Repeat Dose Intravenous Ketamine Is Delayed by Concurrent Benzodiazepine Use. The Journal of Clinical Psychiatry78(3), e308–e309. https://doi.org/10.4088/JCP.16l11277
  24. Uribe, E., Landaeta, J., Wix, R., & Eblen, A. (2013). Memantine Reverses Social Withdrawal Induced by Ketamine in Rats. Experimental Neurobiology22(1), 18–22. https://doi.org/10.5607/en.2013.22.1.18
  25. Javitt, D. C. (2004). Glutamate as a therapeutic target in psychiatric disorders. Molecular Psychiatry9(11), 984–997, 979. https://doi.org/10.1038/sj.mp.4001551
  26. Malhotra, A. K., Adler, C. M., Kennison, S. D., Elman, I., Pickar, D., & Breier, A. (1997). Clozapine blunts N-methyl-D-aspartate antagonist-induced psychosis: A study with ketamine. Biological Psychiatry42(8), 664–668. https://doi.org/10.1016/s0006-3223(96)00546-x
  27. Veraart, J. K. E., Smith-Apeldoorn, S. Y., Kutscher, M., Vischjager, M., Meij, A. van der, Kamphuis, J., & Schoevers, R. A. (2022). Safety of Ketamine Augmentation to Monoamine Oxidase Inhibitors in Treatment-Resistant Depression: A Systematic Literature Review and Case Series. The Journal of Clinical Psychiatry83(6), 21m14267. https://doi.org/10.4088/JCP.21m14267
  28. Sanacora, G., Frye, M. A., McDonald, W., Mathew, S. J., Turner, M. S., Schatzberg, A. F., Summergrad, P., Nemeroff, C. B., & for the American Psychiatric Association (APA) Council of Research Task Force on Novel Biomarkers and Treatments. (2017). A Consensus Statement on the Use of Ketamine in the Treatment of Mood Disorders. JAMA Psychiatry74(4), 399. https://doi.org/10.1001/jamapsychiatry.2017.0080
  29. Rodolico, A., Cutrufelli, P., Di Francesco, A., Aguglia, A., Catania, G., Concerto, C., Cuomo, A., Fagiolini, A., Lanza, G., Mineo, L., Natale, A., Rapisarda, L., Petralia, A., Signorelli, M. S., & Aguglia, E. (2024). Efficacy and safety of ketamine and esketamine for unipolar and bipolar depression: An overview of systematic reviews with meta-analysis. Frontiers in Psychiatry15, 1325399. https://doi.org/10.3389/fpsyt.2024.1325399
  30. Andrade, C. (2017). Ketamine for Depression, 5: Potential Pharmacokinetic and Pharmacodynamic Drug Interactions: (Clinical and Practical Psychopharmacology). The Journal of Clinical Psychiatry78(7), e858–e861. https://doi.org/10.4088/JCP.17f11802
  31. Singh, J. B., Fedgchin, M., Daly, E. J., De Boer, P., Cooper, K., Lim, P., Pinter, C., Murrough, J. W., Sanacora, G., Shelton, R. C., Kurian, B., Winokur, A., Fava, M., Manji, H., Drevets, W. C., & Van Nueten, L. (2016). A Double-Blind, Randomized, Placebo-Controlled, Dose-Frequency Study of Intravenous Ketamine in Patients With Treatment-Resistant Depression. The American Journal of Psychiatry173(8), 816–826. https://doi.org/10.1176/appi.ajp.2016.16010037
  32. Kryst, J., Kawalec, P., Mitoraj, A. M., Pilc, A., Lasoń, W., & Brzostek, T. (2020). Efficacy of single and repeated administration of ketamine in unipolar and bipolar depression: A meta-analysis of randomized clinical trials. Pharmacological Reports72(3), 543–562. https://doi.org/10.1007/s43440-020-00097-z
  33. Wilkinson, S. T., Katz, R. B., Toprak, M., Webler, R., Ostroff, R. B., & Sanacora, G. (2018). Acute and longer-term outcomes using ketamine as a clinical treatment at the Yale Psychiatric Hospital. The Journal of Clinical Psychiatry79(4), 17m11731. https://doi.org/10.4088/JCP.17m11731
  34. Kishimoto, T., Chawla, J. M., Hagi, K., Zarate, C. A., Kane, J. M., Bauer, M., & Correll, C. U. (2016). Single-dose infusion ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists for unipolar and bipolar depression: A meta-analysis of efficacy, safety and time trajectories. Psychological Medicine46(7), 1459–1472. https://doi.org/10.1017/S0033291716000064
  35. McGirr, A., Berlim, M. T., Bond, D. J., Fleck, M. P., Yatham, L. N., & Lam, R. W. (2015). A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychological Medicine45(4), 693–704. https://doi.org/10.1017/S0033291714001603
  36. Anand, A., Mathew, S. J., Sanacora, G., Murrough, J. W., Goes, F. S., Altinay, M., Aloysi, A. S., Asghar-Ali, A. A., Barnett, B. S., Chang, L. C., Collins, K. A., Costi, S., Iqbal, S., Jha, M. K., Krishnan, K., Malone, D. A., Nikayin, S., Nissen, S. E., Ostroff, R. B., … Hu, B. (2023). Ketamine versus ECT for Nonpsychotic Treatment-Resistant Major Depression. New England Journal of Medicine388(25), 2315–2325. https://doi.org/10.1056/NEJMoa2302399
  37. Ghasemi, M., Kazemi, M. H., Yoosefi, A., Ghasemi, A., Paragomi, P., Amini, H., & Afzali, M. H. (2014). Rapid antidepressant effects of repeated doses of ketamine compared with electroconvulsive therapy in hospitalized patients with major depressive disorder. Psychiatry Research215(2), 355–361. https://doi.org/10.1016/j.psychres.2013.12.008
  38. Papadimitropoulou, K., Vossen, C., Karabis, A., Donatti, C., & Kubitz, N. (2017). Comparative efficacy and tolerability of pharmacological and somatic interventions in adult patients with treatment-resistant depression: A systematic review and network meta-analysis. Current Medical Research and Opinion33(4), 701–711. https://doi.org/10.1080/03007995.2016.1277201
  39. Phillips, J. L., Norris, S., Talbot, J., Hatchard, T., Ortiz, A., Birmingham, M., Owoeye, O., Batten, L. A., & Blier, P. (2020). Single and repeated ketamine infusions for reduction of suicidal ideation in treatment-resistant depression. Neuropsychopharmacology45(4), 606–612. https://doi.org/10.1038/s41386-019-0570-x
  40. Sanacora, G., Frye, M. A., McDonald, W., Mathew, S. J., Turner, M. S., Schatzberg, A. F., Summergrad, P., Nemeroff, C. B., & American Psychiatric Association (APA) Council of Research Task Force on Novel Biomarkers and Treatments. (2017). A Consensus Statement on the Use of Ketamine in the Treatment of Mood Disorders. JAMA Psychiatry74(4), 399–405. https://doi.org/10.1001/jamapsychiatry.2017.0080
  41. Schatzberg, A. F. (2014). A Word to the Wise About Ketamine. American Journal of Psychiatry171(3), 262–264. https://doi.org/10.1176/appi.ajp.2014.13101434
  42. Freedman, R., Brown, A. S., Cannon, T. D., Druss, B. G., Earls, F. J., Escobar, J., Hurd, Y. L., Lewis, D. A., López-Jaramillo, C., Luby, J., Mayberg, H. S., Moffitt, T. E., Oquendo, M., Perlis, R. H., Pine, D. S., Rush, A. J., Tamminga, C. A., Tohen, M., Vieta, E., … Xin, Y. (2018). Can a Framework Be Established for the Safe Use of Ketamine? American Journal of Psychiatry175(7), 587–589. https://doi.org/10.1176/appi.ajp.2018.18030290
  43. Szymkowicz, S. M., Finnegan, N., & Dale, R. M. (2013). A 12-month naturalistic observation of three patients receiving repeat intravenous ketamine infusions for their treatment-resistant depression. Journal of Affective Disorders147(0), 416–420. https://doi.org/10.1016/j.jad.2012.10.015
  44. Wilkinson, S. T., Ballard, E. D., Bloch, M. H., Mathew, S. J., Murrough, J. W., Feder, A., Sos, P., Wang, G., Zarate, C. A., & Sanacora, G. (2018). The effect of a single dose of intravenous ketamine on suicidal ideation: A systematic review and individual participant data meta-analysis. The American Journal of Psychiatry175(2), 150–158. https://doi.org/10.1176/appi.ajp.2017.17040472
  45. Hu, Y.-D., Xiang, Y.-T., Fang, J.-X., Zu, S., Sha, S., Shi, H., Ungvari, G. S., Correll, C. U., Chiu, H. F. K., Xue, Y., Tian, T.-F., Wu, A.-S., Ma, X., & Wang, G. (2016). Single i.v. Ketamine augmentation of newly initiated escitalopram for major depression: Results from a randomized, placebo-controlled 4-week study. Psychological Medicine46(3), 623–635. https://doi.org/10.1017/S0033291715002159
  46. aan het Rot, M., Collins, K. A., Murrough, J. W., Perez, A. M., Reich, D. L., Charney, D. S., & Mathew, S. J. (2010). Safety and efficacy of repeated-dose intravenous ketamine for treatment-resistant depression. Biological Psychiatry67(2), 139–145. https://doi.org/10.1016/j.biopsych.2009.08.038
  47. Murrough, J. W., Perez, A. M., Pillemer, S., Stern, J., Parides, M. K., aan het Rot, M., Collins, K. A., Mathew, S. J., Charney, D. S., & Iosifescu, D. V. (2013). Rapid and Longer-Term Antidepressant Effects of Repeated Ketamine Infusions in Treatment-Resistant Major Depression. Biological Psychiatry74(4), 250–256. https://doi.org/10.1016/j.biopsych.2012.06.022
  48. Andrade, C. (2017). Ketamine for Depression, 3: Does Chirality Matter? The Journal of Clinical Psychiatry78(6), e674–e677. https://doi.org/10.4088/JCP.17f11681
  49. Wan, L.-B., Levitch, C. F., Perez, A. M., Brallier, J. W., Iosifescu, D. V., Chang, L. C., Foulkes, A., Mathew, S. J., Charney, D. S., & Murrough, J. W. (2015). Ketamine safety and tolerability in clinical trials for treatment-resistant depression. The Journal of Clinical Psychiatry76(3), 247–252. https://doi.org/10.4088/JCP.13m08852
  50. Chilukuri, H., Reddy, N. P., Pathapati, R. M., Manu, A. N., Jollu, S., & Shaik, A. B. (2014). Acute antidepressant effects of intramuscular versus intravenous ketamine. Indian Journal of Psychological Medicine36(1), 71–76. https://doi.org/10.4103/0253-7176.127258
  51. Loo, C. K., Gálvez, V., O’Keefe, E., Mitchell, P. B., Hadzi-Pavlovic, D., Leyden, J., Harper, S., Somogyi, A. A., Lai, R., Weickert, C. S., & Glue, P. (2016). Placebo-controlled pilot trial testing dose titration and intravenous, intramuscular and subcutaneous routes for ketamine in depression. Acta Psychiatrica Scandinavica134(1), 48–56. https://doi.org/10.1111/acps.12572
  52. Lapidus, K. A. B., Levitch, C. F., Perez, A. M., Brallier, J. W., Parides, M. K., Soleimani, L., Feder, A., Iosifescu, D. V., Charney, D. S., & Murrough, J. W. (2014). A Randomized Controlled Trial of Intranasal Ketamine in Major Depressive Disorder. Biological Psychiatry76(12), 970–976. https://doi.org/10.1016/j.biopsych.2014.03.026
  53. Domany, Y., Bleich-Cohen, M., Tarrasch, R., Meidan, R., Litvak-Lazar, O., Stoppleman, N., Schreiber, S., Bloch, M., Hendler, T., & Sharon, H. (2019). Repeated oral ketamine for out-patient treatment of resistant depression: Randomised, double-blind, placebo-controlled, proof-of-concept study. The British Journal of Psychiatry: The Journal of Mental Science214(1), 20–26. https://doi.org/10.1192/bjp.2018.196
  54. Grant, I. S., Nimmo, W. S., & Clements, J. A. (1981). Pharmacokinetics and analgesic effects of i.m. And oral ketamine. British Journal of Anaesthesia53(8), 805–810. https://doi.org/10.1093/bja/53.8.805
  55. Glue, P., Loo, C., Fam, J., Lane, H.-Y., Young, A. H., & Surman, P. (2024). Extended-release ketamine tablets for treatment-resistant depression: A randomized placebo-controlled phase 2 trial. Nature Medicine30(7), 2004–2009. https://doi.org/10.1038/s41591-024-03063-x
  56. Xiong, J., Lipsitz, O., Chen-Li, D., Rosenblat, J. D., Rodrigues, N. B., Carvalho, I., Lui, L. M. W., Gill, H., Narsi, F., Mansur, R. B., Lee, Y., & McIntyre, R. S. (2021). The acute antisuicidal effects of single-dose intravenous ketamine and intranasal esketamine in individuals with major depression and bipolar disorders: A systematic review and meta-analysis. Journal of Psychiatric Research134, 57–68. https://doi.org/10.1016/j.jpsychires.2020.12.038
  57. Grunebaum, M. F., Galfalvy, H. C., Choo, T.-H., Keilp, J. G., Moitra, V. K., Parris, M. S., Marver, J. E., Burke, A. K., Milak, M. S., Sublette, M. E., Oquendo, M. A., & Mann, J. J. (2018). Ketamine for rapid reduction of suicidal thoughts in major depression: A midazolam-controlled randomized clinical trial. The American Journal of Psychiatry175(4), 327–335. https://doi.org/10.1176/appi.ajp.2017.17060647
  58. Fancy, F., Haikazian, S., Johnson, D. E., Chen-Li, D. C. J., Levinta, A., Husain, M. I., Mansur, R. B., & Rosenblat, J. D. (2023). Ketamine for bipolar depression: An updated systematic review. Therapeutic Advances in Psychopharmacology13, 20451253231202723. https://doi.org/10.1177/20451253231202723
  59. Zarate, C. A., Brutsche, N. E., Ibrahim, L., Franco-Chaves, J., Diazgranados, N., Cravchik, A., Selter, J., Marquardt, C. A., Liberty, V., & Luckenbaugh, D. A. (2012). Replication of Ketamine’s Antidepressant Efficacy in Bipolar Depression: A Randomized Controlled Add-on Trial. Biological Psychiatry71(11), 939–946. https://doi.org/10.1016/j.biopsych.2011.12.010
  60. Diazgranados, N., Ibrahim, L., Brutsche, N. E., Newberg, A., Kronstein, P., Khalife, S., Kammerer, W. A., Quezado, Z., Luckenbaugh, D. A., Salvadore, G., Machado-Vieira, R., Manji, H. K., & Zarate, C. A. (2010). A Randomized Add-on Trial of an N-methyl-d-aspartate Antagonist in Treatment-Resistant Bipolar Depression. Archives of General Psychiatry67(8), 793–802. https://doi.org/10.1001/archgenpsychiatry.2010.90
  61. Schnurr, P. P., Hamblen, J. L., Wolf, J., Coller, R., Collie, C., Fuller, M. A., Holtzheimer, P. E., Kelly, U., Lang, A. J., McGraw, K., Morganstein, J. C., Norman, S. B., Papke, K., Petrakis, I., Riggs, D., Sall, J. A., Shiner, B., Wiechers, I., & Kelber, M. S. (2024). The Management of Posttraumatic Stress Disorder and Acute Stress Disorder: Synopsis of the 2023 U.s. Department of Veterans Affairs and U.s. Department of Defense clinical practice guideline. Ann. Intern. Med.177(3), 363–374. https://doi.org/10.7326/M23-2757
  62. Almeida, T. M., Lacerda da Silva, U. R., Pereira Pires, J., Neri Borges, I., Muniz Martins, C. R., Cordeiro, Q., & Uchida, R. R. (2024). EFFECTIVENESS OF KETAMINE FOR THE TREATMENT OF POST-TRAUMATIC STRESS DISORDER – A SYSTEMATIC REVIEW AND META-ANALYSIS. Clinical Neuropsychiatry21(1), 22–31. https://doi.org/10.36131/cnfioritieditore20240102
  63. Hartland, H., Mahdavi, K., Jelen, L. A., Strawbridge, R., Young, A. H., & Alexander, L. (2023). A transdiagnostic systematic review and meta-analysis of ketamine’s anxiolytic effects. Journal of Psychopharmacology37(8), 764–774. https://doi.org/10.1177/02698811231161627
  64. Wellington, N. J., Boųcas, A. P., Lagopoulos, J., Quigley, B. L., & Kuballa, A. V. (2025). Molecular pathways of ketamine: A systematic review of immediate and sustained effects on PTSD. Psychopharmacology242(6), 1197–1243. https://doi.org/10.1007/s00213-025-06756-4
  65. Pradhan, B., Kluewer D’Amico, J., Makani, R., & Parikh, T. (2016). Nonconventional interventions for chronic post-traumatic stress disorder: Ketamine, repetitive trans-cranial magnetic stimulation (rTMS), and alternative approaches. Journal of Trauma & Dissociation: The Official Journal of the International Society for the Study of Dissociation (ISSD)17(1), 35–54. https://doi.org/10.1080/15299732.2015.1046101
  66. Feder, A., Parides, M. K., Murrough, J. W., Perez, A. M., Morgan, J. E., Saxena, S., Kirkwood, K., Aan Het Rot, M., Lapidus, K. A. B., Wan, L.-B., Iosifescu, D., & Charney, D. S. (2014). Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: A randomized clinical trial. JAMA Psychiatry71(6), 681–688. https://doi.org/10.1001/jamapsychiatry.2014.62
  67. Short, B., Fong, J., Galvez, V., Shelker, W., & Loo, C. K. (2018). Side-effects associated with ketamine use in depression: A systematic review. The Lancet. Psychiatry5(1), 65–78. https://doi.org/10.1016/S2215-0366(17)30272-9
  68. Andrade, C. (2017). Ketamine for Depression, 4: In What Dose, at What Rate, by What Route, for How Long, and at What Frequency?: The Journal of Clinical Psychiatry78(7), e852–e857. https://doi.org/10.4088/JCP.17f11738
  69. Su, T.-P., Chen, M.-H., Li, C.-T., Lin, W.-C., Hong, C.-J., Gueorguieva, R., Tu, P.-C., Bai, Y.-M., Cheng, C.-M., & Krystal, J. H. (2017). Dose-Related Effects of Adjunctive Ketamine in Taiwanese Patients with Treatment-Resistant Depression. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology42(13), 2482–2492. https://doi.org/10.1038/npp.2017.94
  70. Fava, M., Freeman, M. P., Flynn, M., Judge, H., Hoeppner, B. B., Cusin, C., Ionescu, D. F., Mathew, S. J., Chang, L. C., Iosifescu, D. V., Murrough, J., Debattista, C., Schatzberg, A. F., Trivedi, M. H., Jha, M. K., Sanacora, G., Wilkinson, S. T., & Papakostas, G. I. (2020). Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Molecular Psychiatry25(7), 1592–1603. https://doi.org/10.1038/s41380-018-0256-5
  71. Malhi, G. S., Byrow, Y., Cassidy, F., Cipriani, A., Demyttenaere, K., Frye, M. A., Gitlin, M., Kennedy, S. H., Ketter, T. A., Lam, R. W., McShane, R., Mitchell, A. J., Ostacher, M. J., Rizvi, S. J., Thase, M. E., & Tohen, M. (2016). Ketamine: Stimulating antidepressant treatment? BJPsych Open2(3), e5–e9. https://doi.org/10.1192/bjpo.bp.116.002923
  72. Administration, D. E. (2025). KETAMINEhttps://www.deadiversion.usdoj.gov/drug_chem_info/ketamine.pdf
  73. Green, S. M., Roback, M. G., Kennedy, R. M., & Krauss, B. (2011). Clinical practice guideline for emergency department ketamine dissociative sedation: 2011 update. Annals of Emergency Medicine57(5), 449–461. https://doi.org/10.1016/j.annemergmed.2010.11.030
  74. Kochhar, M. M., Aykac, I., Davidson, P. P., & Fraley, E. D. (1986). Teratologic effects of d,1-2-(o-chlorophenyl)-2-(methylamino) cyclohexanone hydrochloride (ketamine hydrochloride) in rats. Research Communications in Chemical Pathology and Pharmacology54(3), 413–416. https://www.ncbi.nlm.nih.gov/pubmed/3797816
  75. Zhao, T., Li, Y., Wei, W., Savage, S., Zhou, L., & Ma, D. (2014). Ketamine administered to pregnant rats in the second trimester causes long-lasting behavioral disorders in offspring. Neurobiology of Disease68, 145–155. https://doi.org/10.1016/j.nbd.2014.02.009
  76. Majdinasab, E., Datta, P., Krutsch, K., Baker, T., & Hale, T. W. (2023–1 C.E.). Pharmacokinetics of Ketamine Transfer Into Human Milk. Journal of Clinical Psychopharmacology43(5), 407–410. https://doi.org/10.1097/JCP.0000000000001711
  77. Wolfson, P., Cole, R., Lynch, K., Yun, C., Wallach, J., Andries, J., & Whippo, M. (2023). The Pharmacokinetics of Ketamine in the Breast Milk of Lactating Women: Quantification of Ketamine and Metabolites. Journal of Psychoactive Drugs55(3), 354–358. https://doi.org/10.1080/02791072.2022.2101903
  78. Mokube, J. A., Verla, V. S., Mbome, V. N., & Bitang, A. T. (2009). Burns in pregnancy: A case report from Buea Regional Hospital, Cameroon. The Pan African Medical Journal3, 21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2984292/
  79. Suppa, E., Valente, A., Catarci, S., Zanfini, B. A., & Draisci, G. (2012). A study of low-dose S-ketamine infusion as “preventive” pain treatment for cesarean section with spinal anesthesia: Benefits and side effects. Minerva Anestesiologica78(7), 774–781. https://www.ncbi.nlm.nih.gov/pubmed/22374377
  80. Food, U. S., & Administration, D. (2025). SPRAVATO® esketamine hydrochloride solution Janssen Pharmaceuticals Inc. Prescribing Information.
  81. Noppers, I. M., Niesters, M., Aarts, L. P. H. J., Bauer, M. C. R., Drewes, A. M., Dahan, A., & Sarton, E. Y. (2011). Drug-induced liver injury following a repeated course of ketamine treatment for chronic pain in CRPS type 1 patients: A report of 3 cases. PAIN152(9), 2173. https://doi.org/10.1016/j.pain.2011.03.026
  82. Köppel, C., Arndt, I., & Ibe, K. (1990). Effects of enzyme induction, renal and cardiac function on ketamine plasma kinetics in patients with ketamine long-term analgosedation. European Journal of Drug Metabolism and Pharmacokinetics15(3), 259–263. https://doi.org/10.1007/BF03190213
  83. Schep, L. J., Slaughter, R. J., Watts, M., Mackenzie, E., & Gee, P. (2023). The clinical toxicology of ketamine. Clinical Toxicology (Philadelphia, Pa.)61(6), 415–428. https://doi.org/10.1080/15563650.2023.2212125
  84. Weiss, M., & Siegmund, W. (2022). Pharmacokinetic Modeling of Ketamine Enantiomers and Their Metabolites After Administration of Prolonged-Release Ketamine With Emphasis on 2,6-Hydroxynorketamines. Clinical Pharmacology in Drug Development11(2), 194–206. https://doi.org/10.1002/cpdd.993
  85. Adhikary, S. D., Thiruvenkatarajan, V., McFadden, A., Liu, W. M., Mets, B., & Rogers, A. (2021). Analgesic efficacy of ketamine and magnesium after laparoscopic sleeve gastrectomy: A randomized, double-blind, placebo-controlled trial. Journal of Clinical Anesthesia68, 110097. https://doi.org/10.1016/j.jclinane.2020.110097
  86. Beaudequin, D., Can, A. T., Dutton, M., Jones, M., Gallay, C., Schwenn, P., Yang, C., Forsyth, G., Simcock, G., Hermens, D. F., & Lagopoulos, J. (2020). Predicting therapeutic response to oral ketamine for chronic suicidal ideation: A Bayesian network for clinical decision support. BMC Psychiatry20https://doi.org/10.1186/s12888-020-02925-1
  87. Erstad, B. L., & Barletta, J. F. (2020). Drug dosing in the critically ill obese patient—a focus on sedation, analgesia, and delirium. Critical Care24(1), 315. https://doi.org/10.1186/s13054-020-03040-z

Learning Objectives:
After completing this activity, the learner will be able to:

  1. Describe the mechanism of action, pharmacokinetics, and pharmacodynamics of esketamine in the treatment of depression.
  2. Evaluate the efficacy, dosing strategies, and clinical considerations for using esketamine in treatment-resistant depression and major depression with suicidal ideation.
  3. Identify and manage common and serious adverse effects associated with esketamine therapy, including strategies for monitoring and risk mitigation under the REMS program.

Original Release Date: July 11, 2025
Expiration Date: July 11, 2028

Faculty: Sebastián Malleza, M.D.
Medical Editor: Flavio Guzmán, M.D. 

Relevant Financial Disclosures:
None of the faculty, planners, and reviewers for this educational activity has relevant financial relationships to disclose during the last 24 months with ineligible companies whose primary business is producing, marketing, selling, re-selling, or distributing healthcare products used by or on patients.

Contact Information: For questions regarding the content or access to this activity, contact us at support@psychopharmacologyinstitute.com

Instructions for Participation and Credit:
Participants must complete the activity online within the valid credit period noted above.

Follow these steps to earn CME credit:

  1. View the required educational content provided on this course page.
  2. Complete the Post-Activity Evaluation to provide the necessary feedback for continuing accreditation purposes and for the development of future activities. NOTE: Completing the Post Activity Evaluation after the quiz is required to receive the earned credit.
  3. Download your certificate.

Accreditation Statement
This activity has been planned and implemented in accordance with the accreditation requirements and policies of the Accreditation Council for Continuing Medical Education through the joint providership of Medical Academy LLC and the Psychopharmacology Institute. Medical Academy is accredited by the ACCME to provide continuing medical education for physicians.

Credit Designation Statement
Medical Academy designates this enduring activity for a maximum of 0.5 AMA PRA Category 1 credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

Free Files
Success!
Check your inbox, we sent you all the materials there.
Continue in the website
Instant access modal

Become a Silver, Gold, Silver extended or Gold extended Member.

2025–26 Psychopharmacology CME Program

Unlock up to 155 CME Credits, including 40 SA CME Credits.